Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648470

RESUMO

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Traumatismos por Explosões/diagnóstico por imagem , Adulto , Masculino , Estados Unidos , Imageamento por Ressonância Magnética , Feminino , Tomografia por Emissão de Pósitrons , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Adulto Jovem
2.
PLoS One ; 19(3): e0296903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427613

RESUMO

There is a growing interest in low dose radiation (LDR) to counteract neurodegeneration. However, LDR effects on normal brain have not been completely explored yet. Recent analyses showed that LDR exposure to normal brain tissue causes expression level changes of different proteins including neurodegeneration-associated proteins. We assessed the proteomic changes occurring in radiated vs. sham normal swine brains. Due to its involvement in various neurodegenerative processes, including those associated with cognitive changes after high dose radiation exposure, we focused on the hippocampus first. We observed significant proteomic changes in the hippocampus of radiated vs. sham swine after LDR (1.79Gy). Mass spectrometry results showed 190 up-regulated and 120 down-regulated proteins after LDR. Western blotting analyses confirmed increased levels of TPM1, TPM4, PCP4 and NPY (all proteins decreased in various neurodegenerative processes, with NPY and PCP4 known to be neuroprotective) in radiated vs. sham swine. These data support the use of LDR as a potential beneficial tool to interfere with neurodegenerative processes and perhaps other brain-related disorders, including behavioral disorders.


Assuntos
Encefalopatias , Exposição à Radiação , Suínos , Animais , Proteômica , Irradiação Corporal Total , Mamíferos , Hipocampo
3.
J Proteome Res ; 23(1): 397-408, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096401

RESUMO

Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100ß, PDGF, and DNA-polymerase-ß) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Substâncias Explosivas , Ratos , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Proteômica , Lesões Encefálicas Traumáticas/patologia , Hipocampo/patologia , Modelos Animais de Doenças
4.
Neuro Oncol ; 26(2): 387-396, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37738677

RESUMO

BACKGROUND: Comprehensive analysis of brain tumor incidence and survival in the Veteran population has been lacking. METHODS: Veteran data were obtained from the Veterans Health Administration (VHA) Medical Centers via VHA Corporate Data Warehouse. Brain tumor statistics on the overall US population were generated from the Central Brain Tumor Registry of the US data. Cases were individuals (≥18 years) with a primary brain tumor, diagnosed between 2004 and 2018. The average annual age-adjusted incidence rates (AAIR) and 95% confidence intervals were estimated per 100 000 population and Kaplan-Meier survival curves evaluated overall survival outcomes among Veterans. RESULTS: The Veteran population was primarily white (78%), male (93%), and between 60 and 64 years old (18%). Individuals with a primary brain tumor in the general US population were mainly female (59%) and between 18 and 49 years old (28%). The overall AAIR of primary brain tumors from 2004 to 2018 within the Veterans Affairs cancer registry was 11.6. Nonmalignant tumors were more common than malignant tumors (AAIR:7.19 vs 4.42). The most diagnosed tumors in Veterans were nonmalignant pituitary tumors (AAIR:2.96), nonmalignant meningioma (AAIR:2.62), and glioblastoma (AAIR:1.96). In the Veteran population, survival outcomes became worse with age and were lowest among individuals diagnosed with glioblastoma. CONCLUSIONS: Differences between Veteran and US populations can be broadly attributed to demographic composition differences of these groups. Prior to this, there have been no reports on national-level incidence rates and survival outcomes for Veterans. These data provide vital information that can drive efforts to understand disease burden and improve outcomes for individuals with primary brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Meníngeas , Meningioma , Veteranos , Humanos , Masculino , Feminino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Adulto , Glioblastoma/epidemiologia , Glioblastoma/terapia , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia
5.
Sci Rep ; 13(1): 21142, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036591

RESUMO

Brain radiation has been medically used to alter the metabolism of cancerous cells and induce their elimination. Rarely, though, brain radiation has been used to interfere with the pathomechanisms of non-cancerous brain disorders, especially neurodegenerative disorders. Data from low-dose radiation (LDR) on swine brains demonstrated reduced levels of phosphorylated-tau (CP13) and amyloid precursor protein (APP) in radiated (RAD) versus sham (SH) animals. Phosphorylated-tau and APP are involved in Alzheimer's disease (AD) pathogenesis. We determined if the expression levels of hyperphosphorylated-tau, 3R-tau, 4R-tau, synaptic, intraneuronal damage, and DNA damage/oncogenic activation markers were altered in RAD versus SH swine brains. Quantitative analyses demonstrated reduced levels of AT8 and 3R-tau in hippocampus (H) and striatum (Str), increased levels of synaptophysin and PSD-95 in frontal cortex (FCtx), and reduced levels of NF-L in cerebellum (CRB) of RAD versus SH swine. DNA damage and oncogene activation markers levels did not differ between RAD and SH animals, except for histone-H3 (increased in FCtx and CRB, decreased in Str), and p53 (reduced in FCtx, Str, H and CRB). These findings confirm the region-based effects of sLDR on proteins normally expressed in larger mammalian brains and support the potential applicability of LDR to beneficially interfere against neurodegenerative mechanisms.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Suínos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Dano ao DNA , Peptídeos beta-Amiloides/metabolismo , Fosforilação , Mamíferos/metabolismo
6.
J Spec Oper Med ; 23(4): 47-56, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37851859

RESUMO

United States Special Operations Forces (SOF) personnel are frequently exposed to explosive blasts in training and combat. However, the effects of repeated blast exposure on the human brain are incompletely understood. Moreover, there is currently no diagnostic test to detect repeated blast brain injury (rBBI). In this "Human Performance Optimization" article, we discuss how the development and implementation of a reliable diagnostic test for rBBI has the potential to promote SOF brain health, combat readiness, and quality of life.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Estados Unidos , Qualidade de Vida , Encéfalo/diagnóstico por imagem , Traumatismos por Explosões/diagnóstico , Traumatismos por Explosões/terapia , Explosões
7.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736080

RESUMO

2022 was a productive year for research in traumatic brain injury (TBI) and resultant neuropathology. After an extensive review, we present related studies and publications which we felt were of particular importance to the neuropathology community. First, 2022 was highlighted by important advancements in the diagnosis and, moreover, our understanding of chronic traumatic encephalopathy (CTE). Important publications include a pair concluding that CTE primarily concerns neuronal accumulation of phosphorylated tau (ptau), but that glial ptau accumulation often helps to facilitate diagnosis. In addition, a new large community study from Australia continues the indication that CTE is relatively uncommon in the community, and the first large-cohort study on brains of military personnel similarly demonstrates that CTE appears to be uncommon among service members and does not appear to explain high rates of neuropsychiatric sequelae suffered by the warfighter. The causation of CTE by impact-type TBI was supported by the application of the Bradford Hill criteria, within the brains of headbutting bovids, and interestingly within an artificial head model exposed to linear impact. Finally, a large-scale analysis of APOE genotypes contends that gene status may influence CTE pathology and outcomes. In experimental animal work, a study using mouse models provided important evidence that TDP-43 facilitates neurodegenerative pathology and is implicated in cognitive dysfunction following TBI, and another study using a swine model for concussion demonstrated that evidence that axonal sodium channel disruption may be a driver of neurologic dysfunction after concussion. Finally, we end with memoriam to Dr. John Q. Trojanowski, a giant of neurodegenerative research and an important contributor to the neurotrauma literature, who we lost in 2022.

8.
Acta Neuropathol ; 146(4): 585-610, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578550

RESUMO

Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Desmielinizantes , Tauopatias , Substância Branca , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Atrofia/patologia , Lesões Encefálicas Traumáticas/patologia , Doenças Desmielinizantes/patologia , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Substância Branca/patologia
9.
Cereb Cortex ; 33(15): 9263-9279, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310176

RESUMO

We studied the effect of multimodal traumatic brain injuries on daily sleep/activity patterns and related histology. Gyrencephalic ferrets wore actigraphs and received military-relevant brain injuries including shockwaves, strong rotational impact, and variable stress, which were evaluated up to 6 months post injury. Sham and Baseline animals exhibited activity patterns occurring in distinct clusters of high activity, interspersed with periods of low activity. In the Injury and Injury + Stress groups, activity clusters diminished and overall activity patterns became significantly more dispersed at 4 weeks post injury with significant sleep fragmentation. Additionally, the Injury + Stress group exhibited a significant decrease in daytime high activity up to 4 months post injury. At 4 weeks post injury, the reactive astrocyte (GFAP) immunoreactivity was significantly greater in both the injury groups compared to Sham, but did not differ at 6 months post injury. The intensity of immunoreactivity of the astrocytic endfeet that surround blood vessels (visualized with aquaporin 4; AQP4), however, differed significantly from Sham at 4 weeks post injury (in both injured groups) and at 6 months (Injury + Stress only). As the distribution of AQP4 plays a key role in the glymphatic system, we suggest that glymphatic disruption occurs in ferrets after the injuries described here.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Concussão Encefálica/complicações , Furões , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Sono
10.
Proc Natl Acad Sci U S A ; 120(13): e2220984120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952379

RESUMO

The amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) of Guam is an endemic neurodegenerative disease that features widespread tau tangles, occasional α-synuclein Lewy bodies, and sparse ß-amyloid (Aß) plaques distributed in the central nervous system. Extensive studies of genetic or environmental factors have failed to identify a cause of ALS-PDC. Building on prior work describing the detection of tau and Aß prions in Alzheimer's disease (AD) and Down syndrome brains, we investigated ALS-PDC brain samples for the presence of prions. We obtained postmortem frozen brain tissue from 26 donors from Guam with ALS-PDC or no neurological impairment and 71 non-Guamanian donors with AD or no neurological impairment. We employed cellular bioassays to detect the prion conformers of tau, α-synuclein, and Aß proteins in brain extracts. In ALS-PDC brain samples, we detected high titers of tau and Aß prions, but we did not detect α-synuclein prions in either cohort. The specific activity of tau and Aß prions was increased in Guam ALS-PDC compared with sporadic AD. Applying partial least squares regression to all biochemical and prion infectivity measurements, we demonstrated that the ALS-PDC cohort has a unique molecular signature distinguishable from AD. Our findings argue that Guam ALS-PDC is a distinct double-prion disorder featuring both tau and Aß prions.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência , Doenças Neurodegenerativas , Transtornos Parkinsonianos , Doenças Priônicas , Príons , Humanos , alfa-Sinucleína , Esclerose Lateral Amiotrófica/metabolismo , Demência/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas tau/metabolismo
11.
Brain Sci ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831830

RESUMO

Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100ß, PDGF) and genomic (DNA polymerase-ß, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100ß, DNA-polymerase-ß, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.

12.
Ann Neurol ; 93(2): 222-225, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504163

RESUMO

Sports concussion has recently assumed special importance because of the widely publicized entity of chronic traumatic encephalopathy (CTE). Identified primarily in former contact sports athletes with repeated mild traumatic brain injury (mTBI), CTE is a distinct tauopathy that can only be diagnosed postmortem and for which no specific treatment is available. Although the hazards of repeated mTBI are generally acknowledged, a spirited controversy has developed because a firm link between sports concussion and CTE has been questioned. We briefly review the history of CTE, discuss areas of uncertainty, and offer suggestions to assist neurologists confronting these issues and advance understanding of this vexing problem. ANN NEUROL 2023;93:222-225.


Assuntos
Concussão Encefálica , Encefalopatia Traumática Crônica , Tauopatias , Humanos , Encefalopatia Traumática Crônica/diagnóstico , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Tauopatias/complicações , Atletas , Autopsia
13.
Brain ; 146(3): 1212-1226, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35953450

RESUMO

There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.


Assuntos
Lesões Encefálicas Traumáticas , Gliose , Humanos , Gliose/patologia , Astrócitos/metabolismo , Encéfalo/patologia , Imageamento por Ressonância Magnética , Lesões Encefálicas Traumáticas/complicações , Proteína Glial Fibrilar Ácida/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(46): e2212954119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343257

RESUMO

Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.


Assuntos
Doença de Alzheimer , Síndrome de Down , Príons , Adulto , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos Transversais , Síndrome de Down/patologia , Príons/metabolismo , Proteínas tau/metabolismo
16.
J Neuropathol Exp Neurol ; 81(12): 988-995, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36264253

RESUMO

The brain of a 58-year-old woman was included as a civilian control in an ongoing autopsy study of military traumatic brain injury (TBI). The woman died due to a polysubstance drug overdose, with Coronavirus Disease 2019 (COVID-19) serving as a contributing factor. Immunohistochemical stains for ß-amyloid (Aß), routinely performed for the TBI study, revealed numerous, unusual neocortical Aß deposits. We investigated the autopsied brains of 10 additional young patients (<60 years old) who died of COVID-19, and found similar Aß deposits in all, using two different Aß antibodies across three different medical centers. The deposits failed to stain with Thioflavin-S. To investigate whether or not these deposits formed uniquely to COVID-19, we applied Aß immunostains to the autopsied brains of COVID-19-negative adults who died with acute respiratory distress syndrome and infants with severe cardiac anomalies, and also biopsy samples from patients with subacute cerebral infarcts. Cortical Aß deposits were also found in these cases, suggesting a link to hypoxia. The fate of these deposits and their effects on function are unknown, but it is possible that they contribute to the neurocognitive sequelae observed in some COVID-19 patients. Our findings may also have broader implications concerning hypoxia and its role in Aß deposition in the brain.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , COVID-19 , Neocórtex , Humanos , Adulto , Feminino , Pessoa de Meia-Idade , Neocórtex/patologia , COVID-19/complicações , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Hipóxia/patologia , Doença de Alzheimer/patologia
17.
Brain ; 145(7): 2555-2568, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35788639

RESUMO

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Adulto , Complexo Antígeno-Anticorpo , Ativação do Complemento , Células Endoteliais , Humanos , Inflamação , SARS-CoV-2
18.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768006

RESUMO

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Assuntos
COVID-19 , Influenza Humana , Neoplasias , Animais , Humanos , Influenza Humana/patologia , Camundongos , Microglia/patologia , Bainha de Mielina , Neoplasias/patologia , SARS-CoV-2
19.
N Engl J Med ; 386(23): 2169-2177, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675177

RESUMO

BACKGROUND: Persistent neuropsychiatric sequelae may develop in military personnel who are exposed to combat; such sequelae have been attributed in some cases to chronic traumatic encephalopathy (CTE). Only limited data regarding CTE in the brains of military service members are available. METHODS: We performed neuropathological examinations for the presence of CTE in 225 consecutive brains from a brain bank dedicated to the study of deceased service members. In addition, we reviewed information obtained retrospectively regarding the decedents' histories of blast exposure, contact sports, other types of traumatic brain injury (TBI), and neuropsychiatric disorders. RESULTS: Neuropathological findings of CTE were present in 10 of the 225 brains (4.4%) we examined; half the CTE cases had only a single pathognomonic lesion. Of the 45 brains from decedents who had a history of blast exposure, 3 had CTE, as compared with 7 of 180 brains from those without a history of blast exposure (relative risk, 1.71; 95% confidence interval [CI], 0.46 to 6.37); 3 of 21 brains from decedents with TBI from an injury during military service caused by the head striking a physical object without associated blast exposure (military impact TBI) had CTE, as compared with 7 of 204 without this exposure (relative risk, 4.16; 95% CI, 1.16 to 14.91). All brains with CTE were from decedents who had participated in contact sports; 10 of 60 contact-sports participants had CTE, as compared with 0 of 165 who had not participated in contact sports (point estimate of relative risk not computable; 95% CI, 6.16 to infinity). CTE was present in 8 of 44 brains from decedents with non-sports-related TBI in civilian life, as compared with 2 of 181 brains from those without such exposure in civilian life (relative risk, 16.45; 95% CI, 3.62 to 74.79). CONCLUSIONS: Evidence of CTE was infrequently found in a series of brains from military personnel and was usually reflected by minimal neuropathologic changes. Risk ratios for CTE were numerically higher among decedents who had contact-sports exposure and other exposures to TBI in civilian life than among those who had blast exposure or other military TBI, but the small number of CTE cases and wide confidence intervals preclude causal conclusions. (Funded by the Department of Defense-Uniformed Services University Brain Tissue Repository and Neuropathology Program and the Henry M. Jackson Foundation for the Advancement of Military Medicine.).


Assuntos
Encéfalo , Encefalopatia Traumática Crônica , Medicina Militar , Militares , Encéfalo/patologia , Encefalopatia Traumática Crônica/etiologia , Encefalopatia Traumática Crônica/mortalidade , Encefalopatia Traumática Crônica/patologia , Humanos , Neuropatologia/métodos , Estudos Retrospectivos
20.
J Neurotrauma ; 39(19-20): 1391-1407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35620901

RESUMO

Emerging evidence suggests that repeated blast exposure (RBE) is associated with brain injury in military personnel. United States (U.S.) Special Operations Forces (SOF) personnel experience high rates of blast exposure during training and combat, but the effects of low-level RBE on brain structure and function in SOF have not been comprehensively characterized. Further, the pathophysiological link between RBE-related brain injuries and cognitive, behavioral, and physical symptoms has not been fully elucidated. We present a protocol for an observational pilot study, Long-Term Effects of Repeated Blast Exposure in U.S. SOF Personnel (ReBlast). In this exploratory study, 30 active-duty SOF personnel with RBE will participate in a comprehensive evaluation of: 1) brain network structure and function using Connectome magnetic resonance imaging (MRI) and 7 Tesla MRI; 2) neuroinflammation and tau deposition using positron emission tomography; 3) blood proteomics and metabolomics; 4) behavioral and physical symptoms using self-report measures; and 5) cognition using a battery of conventional and digitized assessments designed to detect subtle deficits in otherwise high-performing individuals. We will identify clinical, neuroimaging, and blood-based phenotypes that are associated with level of RBE, as measured by the Generalized Blast Exposure Value. Candidate biomarkers of RBE-related brain injury will inform the design of a subsequent study that will test a diagnostic assessment battery for detecting RBE-related brain injury. Ultimately, we anticipate that the ReBlast study will facilitate the development of interventions to optimize the brain health, quality of life, and battle readiness of U.S. SOF personnel.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas , Militares , Biomarcadores , Traumatismos por Explosões/complicações , Humanos , Militares/psicologia , Estudos Observacionais como Assunto , Projetos Piloto , Qualidade de Vida , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA